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Abstract

Rapid urbanization and climate change are intensifying the Urban 
Heat Island (UHI) effect. In many dense tropical and subtropical 
cities of the world, land surface temperatures of 140°F (60°C) 
and air temperatures above 100°F (40°C) regularly occur during 
summer days and persist during the night as air conditioners reject 
heat to the outdoors. Today, 54% of the world’s population resides 
in urban areas and that percentage is projected to increase to 66% 
in future decades, with India being the greatest contributor to this 
growth. Nascent research on the use of building design and urban 
planning to mitigate anthropogenic heat release in India’s developing, 
super-dense cities is emerging, but substantial work is still needed 
to characterize existing conditions and reliably predict the urban 
microclimate in such heat islands. This research uses remote sensing 
data to map Land Surface Temperature (LST) and quantify urban 
heat islands in several Indian and US cities. This work is part of a 
broader research goal of analyzing microclimatic interactions with 
buildings and outdoor occupancy in India’s cities.

Introduction

For those who study building performance and urban 
design, understanding Urban Heat Islands (UHI) can be a 
means to understand the impact of building designs and 
ways to improve their environmental performance. Urban 
Heat Island studies date from at least the 1800s when Luke 
Howard compared temperatures in London to those outside 
the city and concluded that London temperatures repre-
sented an “artificial warmth, induced by [the city’s] structure, 
by a crowded population, and by the consumption of great 
quantities of fuels in fires” (Howard). Since that time, UHI 
has commonly been defined as the higher temperatures in 
urban areas when compared to rural surroundings. More 
recent research has shown that in a city with at least one 
million people, (currently about 25% of urban areas globally 
[Demographia, April 2018]), the annual average ambient air 
temperature can be 1–3°C higher compared to the surround-
ing rural areas (Oke, 1997). In addition, exposed surfaces of 
the built environment in peak summers can be 30°C to 40°C 
(86°F to 104°F) hotter than the urban ambient air dry bulb 
temperature (Akbari, Pomerantz, & Taha, 2001).

Now, 200 years after Howard’s London research, when for 
the first time in history more than half the world’s population 

is urban (Demographia, April 2018) and when all of the 
first seventeen years of the 21st century rank among the 18 
warmest on record (Dahlman, 2017; NOAA, 2018) under-
standing UHI dynamics and how to mitigate them might be 
considered essential education for designers of buildings 
and urban environments.

If population density is a key factor in the creation of UHI as 
Howard suggested, then Asian cities are important areas to 
study. A 2018 study of world urban areas states that 58% of 
the large urban areas are in Asia (Demographia, April 2018). 
A 2016 United Nations report (United Nations, 2016) states 
that, of 31 megacities in the world, i.e., cities with more than 
10 million inhabitants, six are in China and five are in India. 
By 2030, China and India are each projected to have seven 
megacities (17%) of a total of 41 globally.

Current  reviews of UHI research, however, show a limited 
number of studies in these areas, especially for Indian cities 
and some of the other hottest cities in the world (Deilami, 
Kamruzzaman, & Liu, 2018; Giridharan & Emmanuel, 2018; 
Tzavali, Paravantis, Mihalakakou, Fotiadi, & Stigka, 2015). 
One of the primary objectives of this research, therefore, is 
to add to the characterization and understanding of UHIs 
in areas that are currently poorly characterized—India’s 
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developing cities—as a means to understand the impact  
of design of the built environment and how to improve it, 
with a broader goal of analyzing the interaction between 
built environment, UHIs and microclimates. To address that 
objective, LSTs across cities in India and US were mapped 
and UHIs were quantified. The LST maps can be used to 
examine the existing urban landscape and the range of 
temperatures across urban and rural areas, and to identify 
hot spots within these areas.

Methodology

UHI DEFINITION AND DATA

One of the essential decisions in UHI research is deter-
mining how to define and study the UHI phenomenon. 
Urban Heat Islands can be defined and studied in different 
ways (Erell, 2012), mostly influenced by the scale of study: 
Surface Urban Heat Island (SUHI), canopy level UHI, and 
boundary layer UHI. Surface Urban Heat Islands are defined 
by Land Surface Temperatures (LSTs) and the SUHI is 
computed by comparing the LST of urban and rural areas. 
LST data come from remote sensing or other forms of aerial 
imagery (digital data and corresponding earth’s images). 
A canopy level UHI is a micro-scale study defined by air 
temperatures measured closest to the city surfaces, gener-
ally at 6.5 feet above the ground surface, and is quantified as 
the difference between rural and urban air temperatures. A 
canopy level UHI analysis provides most information about 
the urban microclimate, i.e, what urban dwellers experience. 
A boundary layer UHI represents the air temperatures of the 
city as a whole measured above the city’s vertical boundary 
or the virtual dome of the city (commonly referred to as the 
boundary layer). It is computed as the difference between 
atmospheric air temperatures above the city and rural areas, 
showing the meso-scale UHI.

For this research, LSTs were used to define Urban Heat 
Islands. Surface UHIs provide flexibility in terms of spatial 
scale, local through global. LST is the most important 
parameter to understand the surface energy balance of an 
area because the impact of radiation can be computed. A 
recent literature review (Deilami et al., 2018) shows that 
there are at least 75 prior studies that use LST to measure 
the UHI intensity and analyze the spatial and temporal 
factors that impact UHI formation. Of those studies, approxi-
mately 5% were done for cities in India.

This study uses Landsat 8 data. The Landsat program 
launched its first satellite in 1972 and is the world’s longest 
running program to collect satellite images of the earth. The 
Landsat satellite captures data images called scenes that 
are typically sized 115 miles (north-south) by 115 miles (east-
west) every 16 days (US Department of the Interior, 2018). 

Atmospheric disturbances that exist while these images 
are captured require mathematical processing to extract 
the LSTs. The satellite data is in digital numbers (DN—a 
binary integer assigned to each pixel of the image) that must 
be converted to temperatures. DNs include atmospheric 
effects between the earth’s surface and the satellite. To 
convert these DNs to LSTs, several methods have been 
developed by prior researchers (Weng, 2009; Deilami et 
al., 2018; Jimenez-Munoz et al., 2009; Zhang, Wang, & Li, 
2006). One of these methods, the radiative transfer equation 
(Barsi, Schott, Palluconi, & Hook, August 2005), was used 
for computing LSTs in this study.

CHOICE OF URBAN AREAS

The strategy for choosing Indian cities for this research 
was to identify at least one densely populated city from 
each of the five climate zones classified by India’s Energy 
Conservation Building Code (Bureau of Energy Efficiency, 
Government of India, Energy Conservation Building Code, 
2007). Based on this and the availability of cloud-free data, 
a total of seven cities were studied. Populous US cities 
in which UHIs are well-documented (New York, Chicago, 
Houston) were also included in this study to provide 
comp arisons of urban landscapes and to help validate the 
methodology used in this study. Phoenix, a US desert climate, 
was included for comparison to hot, dry Indian locations, 
and Pittsburgh, the city from which the research is being 
conducted, was included in case future work permits the 
exploration of air temperatures and other local built environ-
ment characteristics to serve as validation of the methodol-
ogy applied elsewhere. Table 1 shows the cities chosen for 
this analysis with their Köppen climatic zones, population 
densities (Demographia, April 2018), and cooling and heat-
ing degree day data (Bhatnagar, Mathur, & Garg, 2018).

As seen in the table, the Indian cities are heavily cooling 
dominated compared to the US cities. Even more notice-
able are the differences in population density; the Indian 
cities are 3–15 times more dense than New York City, the 
most densely populated city in the US. Although CCDs in 
Houston and Phoenix are comparable or higher than those 
in India, the HDDs in those cities and far lower population 
densities suggest reduced impact from high temperatures. 

City Köppen Zone* Urban Density  
(ppl/sq mile)

CCD 
(65F/18C) 

HDD (65F 18C) 

Mumbai

Aw

68,400 3,457 0

Chennai 26,100 3,992 0

Bengaluru 24,300 2,342 0

Hyderabad 20,200 3,154 0

Ahmedabad
Bsh

58,400 3,587 6

New Delhi 32,100 2,926 248

Guwahati Cwa 14,600 2,325 61

New York City
Dfb

4,500 1,429 3,996

Pittsburgh 1,900 849 4,915

Chicago Dfa 3,400 992 5,433

Houston Cfa 2,800 3,532 807

Phoenix Bwh 3,100 5,210 608

 
Aw= wet-dry tropical, Bsh=dry tropical, Cwa & Cfa= humid mid-latitude, Dfa & 
Dfb=humid continental, Bwh=dry mid-latitude

 

Table 1: Cities chosen for analysis, Köppen Climate Classification, 

Urban Population Densities, and Cooling and Heating Degree Days 

(base temp: 65°F). 

Landsat data from 2016 was used. Data from the summer 
months was reviewed to identify scenes that covered the 
metropolitan region of the city and surrounding rural areas 
with the least land cloud cover on days when the air tem-
peratures were highest or close to highest. Based on these 
selection criteria, the dates for which data were downloaded 
and their respective air temperature and cloud cover details 
are provided in Table 2.
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Location Date Max Temp 
(°F)

Land Cloud 
Cover (%)

Acquisition Time 
(local time, am)

New Delhi 05/21/2016 111 1.32 10:45

Mumbai 05/03/2016 93 5.15 11:00

Hyderabad 05/23/2016 104 0.04 10:40

Chennai 05/25/2016 106 16.77 10.30

Bengaluru 05/23/2016 100 2.58 10:40

Ahmedabad 05/10/2016 113 5.36 11:00

Guwahati 08/03/2016 100 5.95 09:45

New York City 08/12/2016 93 7.82 10:30

Houston 05/05/2016 57 0.06 10:45

Chicago 06/24/2016 82 22.05 10:30

Pittsburgh 06/14/2016 79 3.98 11:00

Phoenix 07/12/2016 102 0.00 11:00

 

Table 2: Date of analysis, maximum air temperature, cloud cover,  

and data acquisition for different locations. 

Due to extensive cloud cover in data of summer months 
for Guwahati and Houston, non-summer data was used. 
Images from all the cities were captured in the mornings 
between 9 am–11:30 am local times. Use of morning data 
was necessary because the satellite path is fixed and these 
are the daytime hours at which the satellite passes through 
most of the Indian and US cities. Nighttime data is also 
available for some of the US cities, but this study chose to 
analyze the daytime LSTs while the impact of radiation is 
visible. The restriction on time of data capture is a limitation 
of this study, the Landsat data in particular. Availability of 
data across the temporal scale of a day would provide more 
accurate information about UHI at different times of the 
day. Although the results in this study do not reflect the peak 
LSTs of the day, because they reflect similar times of the  
day in summer months, they are still useful for calculating 
the surface UHI.

DEFINING URBAN AND RURAL BOUNDARIES,  
AND QUANTIFYING SUHI

The locations chosen for analysis are dense urban areas/
cities expected to have high temperatures compared to the 
surrounding rural areas. However, there isn’t any standard-
ized way of defining the boundaries of a city/urban area. 
Rapid urbanization often extends built-up areas beyond 
original metropolitan boundaries. Prior research shows that 
researchers use different ways to define a city and/or cal-
culate the UHI intensity (H. Liu & Weng, 2008; W. F. Li, Cao, 
Lang, & Wu, 2017; J.-j. Li, Wang, Wang, Ma, & Zhang, 2009; 
Mathew, Khandelwal, & Kaul, 2017; L. Liu & Zhang, 2011).

For this research, Land Use Land Cover (LULC) data (NRSC, 
2018) for all the Indian cities was studied. Land cover pro-
vides information about the type of land, such as water, crop-
land, etc, while land use shows how the land is being used 
by the human population. LULC data are available for free 
from the National Remote Sensing Center of India and from 
the US National Oceanic and Atmospheric Administration 
for other global locations.

As seen in Figures 1 and 2, in Hyderabad and Ahmedabad, 
the district boundary includes large areas of agricultural and 
barren land, as well as urban built-up area, showing a blend 
of LULC urban  and rural uses. The opposite is observed in 
Figures 3 and 4, for Mumbai and Chennai, where the district 
boundaries do not include all the urban built-up land use  
in that area.

In the chosen Indian cities, neither the city administrative 
boundary nor the district boundary effectively delineated 
urban and rural areas. Hence, the LULC data was visually 
analyzed and mapped, using Google Earth, to define the 
urban boundary. A perimeter was drawn around the urban 
built-up land use type and the area within that perimeter 
was considered to be urban.  The UHI magnitude was 
calculated based on these classifications.

For the US locations, county boundaries were used to define 
the urban areas for every city except New York because the 
county boundary included all the urban built up areas. In 
New York,  the urban area was defined using the LULC and 
Google satellite imagery. For both Indian and US cities, the 
rural boundary was considered to be 50% of the urban area 
added around the urban boundary.

The UHI was quantified as the difference between urban 
mean LST and rural mean LST. Table 3 shows this informa-
tion: the urban and rural mean LSTs for each city and the 
difference between those values, indicated as ΔT. Table 3  
is discussed in the next section.

Results and Discussion

LSTs were mapped and analyzed for each city. Although, 
prior studies show a strong correlation between air tem-
peratures andh LSTs (Gallo, Hale, Tarpley, & Yu, 2011; 
Kawashima, Ishida, Minomura, & Miwa, 2000; Mildrexler, 
Zhao, & Running, 2011; Mutiibwa, Strachan, & Albright, 
2015), none of these studies examine Indian locations. 
Studies show that the relationship between LST and air 
temperature can vary highly with land cover. In this study, as 
seen in Figures 5–9, the LST ranges for cities in India and US 
look similar. The near surface air temperatures, however, are 
likely to be quite different based on the variations in popula-
tion density and CDD shown in Table 1. And these near sur-
face air temperatures affect building cooling energy needs 
and human comfort. Air temperatures are influenced many 
local factors such as infrared radiation, wind, anthropogenic 
heat rejection, cooling caused by vegetation, etc., rather 
than the more limited factors (solar radiation and surface 
properties) that influence LSTs.  However, mapping LSTs 
provides interesting insights into the range of temperatures 
across regions, the urban landscapes, and potential means 
to mitigate UHIs in urban areas. Cool roofs, green roofs, and 
urban greenery are well-documented mitigation measures 
for UHI (Akbari, Levinson, & Rainer, 2005; Akbari, Menon, & 
Rosenfeld, 2009; Baik, Kwak, Park, & Ryu, 2012; Xu, Sathaye, 
Akbari, Garg, & Tetali, 2012). Exploring and mapping LSTs 
is an important first step to identify possible UHI mitigation 
measures related to built environment.
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Figure 1: Land Use Land Cover data for Hyderabad and Rangareddi 

District (surrounding Hyderabad), showing urban areas beyond 

Hyderabad and extensive non-built-up land in Rangareddi District. 

Figure 2: Land Use Land Cover data for Ahmedabad District,  

showing extensive non-built-up land in the district. 

Figure 3: Land Use Land Cover data for Mumbai and Mumbai  

Suburban Districts, showing urban built-up area (in red) beyond 

district boundary line. 

Figure 4: Land Use Land Cover data for Chennai showing urban 

built-up area (in red) beyond district boundary line (in black). 
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LST, LULC, AND URBAN DENSITIES

The LST maps were examined to see the temperature 
patterns across locations. In the maps for Indian locations, 
the core urban areas with high urban densities indicate 
lower LSTs than the suburban or rural areas for all cities 
except Chennai and Guwahati. Figure 5 shows the maps 
for Delhi and Guwahati. In dense urban areas, concrete 
buildings with some surrounding greenery, such as can be 
found in Delhi, can cause local shading, reducing the surface 
temperatures. By comparison, rural areas of Delhi are barren, 
fallow lands with no shading or moisture, and hence retain 
the heat from the short wave radiation that increases LST.  
A similar case is the US city of Phoenix, where the urban 
LSTs are lower than the surrounding desert lands (Figure 6).

For Chennai and Guwahati, however, the surrounding rural 
areas are densely vegetated, with more moisture, shading, 
and evapotranspiration, and hence lower temperatures 
compared to urban areas. This pattern is also observed for 
all the US cities except Phoenix. Figure 6 shows how LSTs 
taper away from the city center in Chicago, whereas the 
reverse is seen in Phoenix.

These maps do not clearly show the impact of population 
density on LSTs. Vertically rising buildings with no or mini-
mal greenery are typical  in dense Indian cities. Because the 
satellites read only the earth’s skin temperatures, which may 
be roof and pavement temperatures, they may record lower 
temperatures within the city when compared to surrounding 
barren lands with no shading effect or moisture.

LST, LULC, AND HUMIDITY

Though LSTs are mainly influenced by surface properties, 
they can also vary with convective transfer that occur 
across surfaces, transferring heat from the surface to the 
lower atmosphere. This convective heat transfer process 
is highly dependent on the roughness of the surface and is 
also affected by humidity and heat rejection from human 
activities (Oke, 1982). This current work doesn’t highlight 
or quantify the impact of human activity, but the SUHI 
patterns across humid climates were studied. A prior study 
(Zhao, Lee, Smith, & Oleson, 2014) reported that the SUHI 
is higher in humid climates where rural areas have higher 
moisture, greenery, and roughness. This phenomenon was 
also observed in this study, where the SUHIs are higher for 
humid climates.

Figure 7 shows examples of this. Chennai, a southern city 
in India on the Bay of Bengal, showed a ΔT of 3°F (see Table 
3). This is the maximum DT observed among all the Indian 
locations and is the only case in which urban LSTs are 
greater than the rural. Similarly, Houston, a southern city in 
the US near the Gulf of Mexico, shows a DT of 12.8º F, the 
maximum among the US locations. As seen in the figure, 
the urban areas show higher temperatures compared to the 
surrounding areas. New York City, another humid location, 
follows this pattern with a higher ΔT (7.9°F) compared to  
the other cities in the US.

Figure 5: LST maps for Delhi and Guwahati showing urban and the 

surrounding areas. Delhi shows higher LSTs in rural barren lands 

compared to dense urban areas. Guwahati has higher LSTs in urban 

areas compared to surrounding vegetated rural areas. 

Figure 6: LST maps for Chicago and Phoenix showing areas. Chicago 

has higher LSTs in urban areas compared to surrounding vegetated 

rural areas. Phoenix shows higher LSTs in rural barren lands 

compared to dense urban areas. 
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Figure 7: LST maps for Chennai and Houston showing warmer urban 

areas compared to the surrounding rural areas. 

Figure 8: Land Use Land Cover Map (2016–17) of Mumbai and 

|surrounding areas in comparison with the LSTs across the area. 

However, this wasn’t true in the case of Mumbai, a western 
city along the Arabian Ocean in India, seen in Figure 8.  
The pattern in Mumbai is the opposite. The rural mean LST 
is 6.1°F greater than urban mean LST. Figure 8 shows the 
LULC maps for Mumbai and its surrounding areas, and the 
LST map. As seen in the figure, the majority of the rural 
surrounding of Mumbai are forests or croplands (rainy 
and winter crops) that lack greenery and moisture during 
summers, which may be the reason for the higher LSTs.

COMMON HOT SPOTS ACROSS URBAN AREAS

For all the locations in India and the US, the maximum 
LSTs are noted at either airports or black roofs on industrial 
or manufacturing buildings, and the minimum LSTs are 
observed in vegetated forest lands or water bodies. An 
example of this is shown in Figure 9, showing the maximum 
LST areas for Ahmedabad and New York City mapped with 
respective Google satellite imagery. 

Figure 9: Ahmedabad and New York City LST maps highlighting  

example pixels with close to maximum LST values shown for an airport 

runway in the case of Ahmedabad, and for a black roof of a commercial 

building in New York City. 

These results suggest the importance of albedo and  
evapotranspiration. Both of these factors have been identi-
fied by other authors as important factors in creating lower  
LSTs (Chen, Zhao, Li, & Yin, 2006; J. X. Li et al., 2011; Xu  
et al., 2012).
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SUHI QUANTIFICATION AND RESULTS VALIDATION

The DTs (TLSTurbanMeanLSTurbanMean – TLSTruralMeanLSTruralMean) calculated for all cities 
are shown in Table 3 and are consistent with the LST 
patterns mapped. For the Indian cities, the urban mean LSTs 
range from a low of 82°F in Guwahati, to a high of 114°F in 
Ahmedabad. The rural mean LSTs for the Indian cities are 
all slightly higher than the urban mean LSTs, ranging from 
82.3°F in Guwahati to 120°F in Mumbai. This results in a 
negative number for the DT values in each Indian city. The 
greatest difference occurs in Mumbai, when the rural mean 
LST exceeds the urban mean LST by 6°F. These results 
appear to contradict the conventional definition of an Urban 
Heat Island, where urban temperatures exceed rural tem-
peratures. While this trend of warmer rural temperatures 
in Indian locations was previously reported, there are no 
studies that have computed the intensities across several 
urban locations of India.

For the US cities, the urban mean LST range is similar to  
that of the Indian cities, ranging from a low of 83°F in 
Pittsburgh to a high of 131°F in Phoenix. However, for all the 
US cities except Phoenix, the rural mean LSTs are lower 
than the urban mean LSTs, a pattern consistent with the 
conventional UHI definition. Under these conditions, the 
DT is a positive number for each city except Phoenix. The 
largest difference occurs in Houston, where the urban mean 
LST exceed the rural mean by 11.4°F. In Phoenix, the DT is 
negative, but the difference is less than 1°F. These LSTs and 
the DTs computed for US locations are comparable with 
existing research (Liu & Weng, 2009; Li et al., 2016; Zhao et 
al., 2014; Imhoff, Zhang, Wolfe, & Bounoua, 2010).  Hence, 
inclusion of US locations in this study not only helped in 
drawing comparisons across different climates and surface 
characteristics, but also helped in validating the methodol-
ogy of this study. During the analysis, it was also noticed that 
the DT value, i.e., SUHI quantification, is highly dependent 
on how the urban and rural areas are defined. Alternative 
approaches to boundary definitions will be explored in 
future research. 

Location Urban Mean LST (0F) Rural Mean LST (0F) DT (0F)

Delhi 113.8 114.2 -0.4

Mumbai 114.4 120.6 -6.1

Chennai 104.3 101.3 3.0

Bengaluru 97.4 98.6 -1.2

Hyderabad 102.4 105.8 -3.4

Ahmedabad 124.8 127.2 -2.5

Guwahati 82.0 82.3 -0.3

New York City 103.8 95.9 7.9

Chicago 97.2 93.1 4.2

Houston 96.2 83.5 12.8

Pittsburgh 82.8 79.7 3.1

Phoenix 130.9 131.8 -0.8

 

Table 3: Surface Urban Heat Island intensities across all the 

locations in India and the United States. 

LIMITATIONS

There are prior studies of Indian urban areas that identify  
the impact of urbanization on LSTs and vegetation cover 
over time (Sharma, Ghosh, & Joshi, 2013; Jalan & Sharma, 
2014; P. Singh, Kikon, & Verma, 2017). These studies indi-
cate that LSTs in urban areas in India increased with time 
due to a decrease in vegetation. These studies also showed 
increased LSTs over more land area due to urban sprawl,  
a finding somewhat different from that observed here. One 
of the limitations of this study is the temporal scale. The 
analysis was conducted using data from a single summer 
day. Hence, future work will include analysis across different 
seasons and years. It will also attempt to understand the 
interrelationship over time between urban development  
and the barren land within and around Indian cities.

Remote sensing data is commonly used for UHI studies 
because of its easy availability at no cost. However, LSTs 
may be quite different than the UHI as experienced by the 
human population. Consideration must be given for means 
to compare LST data with the urban microclimate, assum-
ing that canopy level studies of each of these cities is not 
feasible for this research project.

The current research is a first step in achieving the broader 
goal of identifying the impact of the built environment, spe-
cifically building design and urban configurations, on UHIs 
across urban areas in India. The work, therefore, focuses on 
understanding the potential reasons for the UHI patterns 
and magnitudes and does not discuss the impacts—environ-
mental, social, or economic—of the observed results. This 
will be a part of future work.

Conclusion

One of the primary objectives of this research was to add 
to the characterization and understanding of UHIs in areas 
that are currently poorly characterized—India’s developing, 
super-dense cities—as a means to understand the impact of 
design of the built environment and how to improve it. While 
the results to date do not yet provide extensive insights 
into urban and building design strategies, they do provide 
useful information about the use of remote sensing data to 
map UHIs in rapidly developing places like India and reveal 
patterns in UHI that suggest the need for further exploration.

Remote sensing data is free and readily available, and as 
such provides the opportunity for UHI research almost 
anywhere. The mapping analysis in this research yields 
several insights, some of the most important include the LST 
maps for Indian locations that do not represent a traditional 
UHI pattern and that administrative boundaries are likely to 
be different from actual urban boundaries, so a UHI analysis 
must consider carefully how urban and rural boundaries are 
defined. Currently, researchers use a variety of methods and 
this can make the interpretation and comparison of results 
across studies difficult. The search for new and effective 
methods to define boundaries is important, however, and 
perhaps could become more standardized in the future.

As seen in this work to date, single point-in-time summer 
LSTs may be similar in very different climates. They do  
ot reflect the duration of heat (CDDs) and do not appear to 
indicate the impact of humidity. As such, comparing LSTs 
and the UHI ΔTs across locations may not reveal a great  
deal about the intensity or human impact of the UHI in a 
given location.
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The SUHI quantification (ΔT) in this study revealed a pattern 
of consistently negative DT values for the Indian cities, 
except for Chennai, and for one US, Phoenix. The occurrence 
of negative ΔT values has been noted in other studies, but to 
date, very few researchers seem to have suggested that the 
definition of Urban Heat Islands may need to be revisited. 
Reconsidering the definition seems warranted and may lead 
to new insights into effective development of both urban 
areas and surrounding rural lands.

LSTs do not seem to reflect much impact of population 
density. As such, they may not be useful in looking at the 
combined impact of high pop density in already hot climate 
and climate change. A study of LSTs in a single area across 
multiple years, however, may be useful in evaluating those 
impacts and their magnitude based on the pace of change 
over time.

One clear design insight the study did provide was that, 
regardless of climate and the characteristics of natural land  
surfaces, dark building roofs and pavements will be hotter. 
In hot climates, those surface temperatures can exceed 
140°F, even during morning hours. Design and engineering 
strategies that provide alternatives to dark roofs and pave-
ments, and to their total surface area, will reduce LSTs.  
Because LSTs do not represent the air temperatures or  
the extent to which UHIs can impact building energy 
consumption and human comfort, it may be necessary to 
integrate LST research with a microclimate analysis of the 
built environment and canopy level UHIs to characterize UHI 
sufficiently to propose mitigation measures that address 
building and urban design. 
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