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Abstract

This article proposes an integrated data-driven framework for  
urban energy use modeling (UEUM) that enables providing a 
holistic image of urban energy use at multiple scales. The UEUM 
allows aggregating across end-uses, building, and transportation. 
With considering urban socio-spatial context, it gives insight into 
the multifaceted and intricate relationships between urban key 
attributes, and building and transportation energy performance. This 
model helps predict urban energy performance more precisely by 
reducing the simulation uncertainties through using disaggregated 
and spatially explicit data and applying artificial intelligence (AI) 
techniques. In addition to increasing the accuracy, the model 
facilitates reducing the execution time for an urban scale energy 
modeling. The framework was evaluated using Chicago, Illinois, 
a major city in the US, as a case study. The results for Chicago 
demonstrate the feasibility of this approach. Among the tested AI 
algorithms, k-nearest neighbor performed as the best model in terms 
of accuracy for a single-output model while artificial neural network 
algorithm showed the best overall performance for the integrated 
building and transportation energy use modeling.

Introduction

Buildings are the most significant contributor to urban energy 
use, followed by the transport sector (US EPA, 2017). The 
urban buildings and transportation energy performance are 
interrelated at various levels (Abbasabadi & Ashayeri J. K., 
2019), and are influenced by the urban socio-spatial context 
(Liu et al., 2019). Hence, an integrated urban energy model 
is required that unifies building and transportation in one 
model and contextualizes the model with the actual urban 
socio-spatial context. This model can provide architects, 
urban designers and planners, and policymakers with tools to 
predict the urban energy and environmental impacts associ-
ated with alternative scenarios of city development. However, 
the existing methods and tools often have limitations in 
giving a realistic assessment of urban energy flows and 

aggregating across multi-scales and end-uses  (Abbasabadi 
& Ashayeri J. K., 2019). Moreover, existing literature tends to 
examine a few aspects of urban energy determinants such 
as urban form, building characteristics, and human-related 
aspects. However, they lack a holistic approach.

The development of artificial intelligence (AI) algorithms, 
specifically those based on machine learning (ML) mod-
els, with rising data availability and quality, provide new 
possibilities for improving the precision and complexity of 
urban energy use models (Abbasabadi & Ashayeri, 2019). 
An AI simulation framework can provide the opportunity 
to predict and understand urban energy demand patterns 
and to explore the complex interrelations between urban 
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Figure 1: The UEUM Conceptual Framework.

energy determinants. This research proposes an integra
ted urban energy use modeling (UEUM) framework that 
applies AI approach, localizes the model, and considers the 
urban socio-spatial context. Then the results are visualized 
through using Geographic Information Systems (GIS) plat
form. The framework simulates energy use at multi-scale 
representing an individual building, block, neighborhood, 
and city scales. Chicago, Illinois, has been selected to eva
luate the model. However, the model is replicable to all  
other cities.

Methodology

The UEUM framework employs artificial intelligence sim-
ulation approach for an integrated building and transport 
energy modeling. It combines building operational energy 
use prediction in the urban context with a travel demand 
model for transport energy use prediction. It uses the 
existing local data at building, neighborhood, and city levels, 
along with the GIS data, which are available for the major 
cities in the US. The framework explores actual socio-spatial 
patterns of the city to learn and extract new features and 
add localized variables in the model, and predicts urban 
energy use through learning the mathematical relationship 
between variables and tests different ML techniques and 
algorithms to propose an enhanced predictive model.

The key urban energy determinants related to the scope of 
this research include: 1) Building characteristics consisting 
of variables, such as building type, building height, building 
size, and construction year; 2) Urban attributes functioning 
as density, accessibility, connectivity, and land-use mixed, 
which are captured via urban sprawl index; 3) Occupancy 
characteristics including total population, household size in 
residential buildings, worker density in commercial build-
ings, and percentage of occupied units; 4) Socioeconomic 
indicators including income, unemployment, poverty level, 
dependency, education, and crowded housing variables; and 
5) Mobility and travel patterns, which include neighborhood 
characteristics such as transit-oriented, walkability, bike-
ability indices, and mode of travel and travel distance.

Various datasets were used including urban spatial data, 
building characteristics, occupancy and socioeconomic indi-
cators, building operational energy, and travel patterns data. 
The building characteristics are captured from the Chicago 
building footprints (CBF) dataset (“Building Footprints,” 
2015) which is a GIS-based dataset and represents a 
compilation of land use and geographic data for Chicago. 
The Chicago boundaries and zoning districts (“Boundaries-
Zoning Districts,” 2019) and Property Tax Data from the 
Assessor’s Office (“Cook County Assessor Data,” 2019) were 
used as supplementary datasets providing information 
such as land use and building age. The U.S. Urban Sprawl 
Data (“Updated Urban Sprawl Data for the United States,” 
2010) was also applied which represents multidimension-
ally geo-referenced urban attributes such as density, land 
use, activity centering, and accessibility factors. Chicago 
socioeconomic indicators dataset  (“Census Data-Selected 
socioeconomic indicators in Chicago, 2008–2012,” 2019) 
was used to represent households socioeconomic variables.

For building energy data, two datasets were used, including 
Chicago Energy Benchmarking dataset (City of Chicago, 
2016) (2,717 buildings greater than 50,000 ft2) and Chicago 
Energy Usage dataset (City of Chicago, 2010) (65,378 
buildings of all sizes). The urban transport energy model 
is developed upon Chicago Regional Household Travel 
Tracker Survey by CMAP (“Household Travel Survey,” 
2016), Fuel Economy data (“Fuel Economy,” 2019) by the 
U.S. Department of Energy (DOE), and Average passen-
ger transportation energy intensity per mile travel from 
the U.S. Department of Transportation (DOT) Bureau of 
Transportation Statistics (BTS) (“National Transportation 
Statistics,” 2019) datasets. Other mobility and travel 
patterns were extracted from neighborhood walkability, 
bikeability, and transit-oriented indices (“Chicago neighbor-
hoods on Walk Score,” 2019).

Several promising AI algorithms including Artificial Neural 
Networks (ANNs), K-Nearest Neighbors (k-NN), Random 
Decision Forest (RDF), and Regression Trees (RT) in addi-
tion to Nonlinear Regression (NLR) and Multiple Linear 
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Regression (MLR) algorithm as the most common statistical 
method used in the previous studies, were utilized in this 
research to propose the most accurate model for urban 
building and transportation energy use modeling. The 
models were validated using five-fold Cross-validation (CV) 
(Borra & Di Ciaccio, 2010), which is an effective validation 
method. As the next phase, the models were evaluated 
and compared in terms of their prediction performance 
as defined as metrics to calculate the errors between the 
predicted and actual values. The most widely used metrics 
for assessing the predictive models including the mean 
square error (MSE), mean absolute percentage error (MAPE) 
and R-squared (R2) were used in this research. The lower the 
values of MSE, and MAPE and higher values of R2 demon-
strate the better performance of the model.

The travel demand modeling was developed to estimate 
transportation energy use per household for various modes 
of travel, including car and public transit across different 
neighborhoods. The urban transportation EUI was predicted 
by incorporating miles traveled, fuel economy of each travel 
modes, and energy intensity factors per the mode of travel 
which was adopted from previous studies as it is shown to 
be an effective method (Lindsey, Schofer, Durango-Cohen, & 
Gray, 2011; Norman, MacLean, M.ASCE, & Kennedy, 2006). 
As the next step, an integrated urban building and trans-
portation model was developed which enables capturing 
complex relationships and contributions of urban energy key 
variables in the model. Since data for the urban transpor-
tation energy model is available only at the household level, 
and residential and non-residential buildings have different 
energy behaviors, the predictive and explanatory models 
for residential and non-residential buildings are simulated 
separately. Finally, GIS-based visualizations were developed 
to illustrate the predicted urban energy use across scales 
including building, block, neighborhood, and city levels. 
Figure 1 illustrates the UEUM conceptual framework. 

Results

The scatterplots in Figure 2 illustrate the results of the 
performance of different AI simulation algorithms in terms 
of obtained actual versus predicted energy use values. The 
models were tested across the merged dataset of 58,205 
observations to predict building EUIs for the 820,606 
out-of-sample buildings in Chicago for which energy use 
data is not available. Ideally, all points should be close to 
a regressed diagonal line. For instance, if the Actual is 3, 
the predicted should be reasonably close to 3. The models 
were executed for predicting the EUI of all building types, 
including both residential and non-residential buildings. The 
results demonstrate the effectiveness of the k-NN algorithm 
for predicting building operational EUI in terms of accuracy 
for a single-output model, for only building energy use com-
pared with the other AI algorithms tested in this research 
including ANNs, RDF, and RT, algorithms, and statistical 
methods including the MLR and NLR models. The results 
show that MLR has the weakest predictive performance in 
this case. As Figure 2 illustrates, the k-NN algorithm rep-
resents a MAPE of 1.832% while RT shows a MAPE of 4.8%, 
ANN, RDF, and NLR have a MAPE of 5.1%, and MLR has a 
MAPE of 5.3% in this model. The results indicate that k-NN 
is able to decrease the error by 65%, compared with the 
MLR method, which has been used in previous studies as a 
common method for energy prediction modeling. In terms of 
R2, the k-NN, RT, ANNs, RDF, NLR, and MLR models showed 

R2 (as calculated based on actual vs. predicted energy use) 
values of 0.75, 0.42, 0.33, 0.33, 0.29, and 0.28 respectively. 
It indicates that the best and weakest models are k-NN 
and MLR with explaining 75% and 28% of the variance in 
building operational EUI.

The integrated model combines the residential building EUI 
and household transportation EUI across 46,843 observa-
tions. The results of integrated building and transportation 
energy use model reveal that ANN performs the best 
compared with other tested algorithms. The results indicate 
that the urban attributes examined here using the ANN 
algorithm explain 41% and 96% of the variance in building 
and transportation energy use intensity, respectively. Figure 
3 illustrates multiple-scale building and transportation 
energy modeling including a predictive model for energy 
consumption at individual building level (Figures 3A & B) 
and travel demand (Figure 3C), and transport energy use 
modeling (Figure 3D) at neighborhood scales.

The UEUM predictive model provides essential energy 
information at a multi-level. The framework has the poten-
tial to aid in understanding energy use patterns across the 
city with a high level of resolution to meet sustainable built 
environment plans. The model informs existing energy 
demand patterns and predicts future needs, which can help 
in retrofit programs and early-stage planning and design in 
line with energy efficiency policies. Through aggregating 
across multi-scales, it can be implemented as a more 
comprehensive decision-making tool. It identifies patterns 
of energy use and evaluates the trade-offs between different 
strategies or scenarios of development and their impacts on 
energy for building and transportation sectors. 

Figure 2: Scatterplots of the Actual vs Predicted Energy Use. 

The results of this study demonstrate that all the urban 
attributes incorporated in the model (e.g., building 
characteristics, urban spatial patterns, occupancy, and 
socioeconomic factors, and mobility and travel factors) 
are vital predictors. These factors influence both building 
and transportation energy performance, however, with a 
different magnitude of impact. The results suggest that 
occupancy and socioeconomic indicators play an essential 
role in urban energy use models for both building and 
transportation EUI. Considering other influencing factors 
such as occupant behavioral factors and construction 
systems could contribute to a more comprehensive model 
for urban energy modeling.
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Conclusion

The integrated urban energy use modeling (UEUM) frame-
work developed by this research enables predicting urban 
building and transportation energy at multi-scales of build-
ing, block, neighborhood, and city levels through applying 
an artificial intelligence (AI) based approach. The analysis 
results reveal that the urban energy prediction accuracy can 
be enhanced by utilizing building level disaggregated data 
and incorporating the actual urban socio-spatial factors. 
Also, more advanced AI algorithms enable an improved 
perdition model. Among the promising models tested in 
this research, the k-nearest neighbor (k-NN) showed the 
best predictive performance for single output model (e.g., 
building or transportation EUI as the target variable). While 
ANNs algorithm performed the best for an integrated model 
with two outputs, building and transportation simulta-
neously. The finding of this study also provides empirical 
evidence on existing energy demand profiles and how urban 
socio-spatial context impacts the building and transport 
energy performance. Finally, including urban spatial pat-
terns along with socioeconomic and occupancy indicators 
can help more in-depth modeling of the integrated urban 
energy use. Future study suggests a quantitative analysis of 
the complex relationship between the urban socio-spatial 
patterns and building and transport EUI. 
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Figure 3: A Multi-Scale and Multi-Dimensional Urban Energy Use Modeling.  A & B) Urban Building Energy Modeling.   

C) Travel Demand Modeling.  D) Transportation Energy Modeling.
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