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Abstract

Natural ventilation can promote comfort, health, and productivity 
of occupants and, at the same time, reduce the operational energy 
use of buildings. This strategy, however, is usually applied at the cost 
of indoor air quality (IAQ) by unintentionally bringing in outdoor air 
pollutants. Hence, estimation of energy and indoor air quality (IAQ) 
is essential for the design of naturally ventilated buildings through 
reliable evaluation of trade-offs between energy-saving potential 
and human health risks. The primary objective of this paper is to 
propose a framework for integrated energy and IAQ which enable 
localizing outdoor conditions, including air pollution and airflows in 
building site resolution through a hybrid engineering simulation and 
an artificial intelligence-based approach. CFD, CONTAM, and Ener-
gyPlus applications are used in this framework to calculate airflow, 
IAQ, and energy-saving potential of the building, respectively. The 
ML algorithms are also extended into CFD application to help facil-
itate localizing outdoor airflow, effectively. The results are validated 
against measured on-site observation data. This framework is tested 
on the DOE’s large-size office buildings located at Federal Campus 
in downtown Chicago. The outcomes of this research enable design-
ers in an early stage to identify outdoor air determinants and localize 
them in building site scale, and analyze integrated energy-saving 
potential and IAQ in a reliable and efficient way.

A HYBRID DATA-DRIVEN AND 
SIMULATION-BASED FRAMEWORK  
FOR INDOOR AIR QUALITY AND  
ENERGY MODELING
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Introduction

According to the National Human Activity Pattern Survey 
(NHAPS), Americans spend about 87% of their time 
indoors (Klepeis et al., 2001). Indoor spaces are to shelter 
the occupants from severe and uncomfortable weather 
conditions, as well as the outdoor air contaminants. Heating, 
ventilating, and air conditioning (HVAC) systems are used to 
provide thermally comfortable conditions and protect IAQ 
for the health of building occupants (Dutton et al., 2013). 
Mechanical systems in buildings have the most significant 
contributions (39%) to overall energy consumption in the  
US (U.S. Depertment of Energy, 2012). Due to recent efforts 
in reducing energy use and greenhouse gas emissions, NV  
is being proposed as a means of saving energy and improv-
ing the IAQ for office buildings, with respect to “green 
building” goals. Of all uncertainties in the design of NV 
systems, the localized methodological, air pollution, and 
airflow uncertainties regarding the building site are over-
looked areas of studies.

Cooling and ventilation systems account for 35% of the 
end-use energy in the US office stock. NV has the potential 
to reduce the energy loads during temperature suitable 
times as well as to lower the psychological distress and sick 
building syndrome (SBS) prevalence (Mendell et al., 2015; 
Preziosi, 2004) in the workplace. However, improper design 
of naturally ventilated systems results in certain acute and 
chronic diseases (Suh et al., 2000) of occupants in terms of 
unintentionally bringing in the ambient pollutants. It should 
be noted that the SBS symptoms are seen where a building 
is ventilated by conventional mechanical means (with no 
cooling and humidifiers) or by natural ventilation strategies 
with insufficient ventilation rates.

Naturally ventilated buildings are often blamed for outdoor 
environmental conditions and inconsistent performance 
in providing higher indoor environmental quality (IEQ) 
for occupants. The inconsistent wind speed and direction 
(Rong et al., 2015; Yang & Zhao, 2012), seasonal and severe 
weather variations (Shi et al., 2018), and outdoor air pollu-
tion are the most critical variables for designing the NV sys-
tems. On the other hand, airflow and air quality simulations 
are time-consuming and extensive in cases where the CFD 
simulation or experimental study are applied. Data-driven 
methods can be applied to help facilitate airflow and air 
quality analysis for NV studies. Yi et al. (2012) developed a 
framework which integrates the data-driven and simulation 
procedures for NV predictions. With applying the artificial 
neural network (ANN) model (Abbasabadi & Ashayeri, 2019) 
for estimating the wind speed and direction, the CFD-based 
simulation results were captured 400 times faster relative 
to the conventional methods. Meanwhile, through utilizing a 
stochastic Monte Carlo analysis, the hourly thermal bound-
ary conditions were also obtained faster for calculating 
building envelope temperature. Chen et al. (2018) proposed 
a framework which calculates the NV potentials in hybrid 
operated buildings (small- to medium-size offices) and 
plots the NV suitable hours for cities within the ASHRAE 
climatic zones. The results illustrate that May, August, and 
September are the three suitable months for NV operation 
in Chicago, which exceeds the mean annual NV suitable 
hours (11.30%) nationwide. Regarding the literature, the 
localized ambient air quality in analyzing NV systems is an 
overlooked area of study.

There is a limited number of research works to analyze 
the IAQ in naturally ventilated buildings in an integrated 
manner. However, these models have methodological 
uncertainties and limitations which stem from oversim-
plification of data and system, relying on generalized data, 
a lack of a robust approach to localize the meteorological 
and outdoor air pollution data in building site scale, and 
conventional approaches for simulating IAQ and energy 
use in an integrated way that are less efficient, timely, and 
computationally.

For airflow studies, the application of CFD simulation 
is unavoidable to solve the turbulence problems around 
buildings, which needs a significant amount of time. Also, 
experimental studies on outdoor air quality need a long-time 
on-site observation effort. Artificial intelligence-based 
techniques can be applied to help facilitate the implementa-
tion of both in a timely effective way (Challoner et al., 2015; 
Losada et al., 2016; Tong et al., 2016; Y. Wang & Malkawi, 
2014). The main objectives of this research are to:

	— Develop an integrated framework for effectively 
analyzing IAQ and Energy Saving Potentials 
(IAQ-ES) in NV operated office buildings through 
the application of hybrid simulation and an artificial 
intelligence-based approach

	— Identify and predict the impacts of local outdoor 
conditions on an NV-operated office building

	— Execute the system in computational and time- 
efficient ways

Methodology and Preliminary Results

This section elaborates on the proposed framework, which 
localizes the meteorological, air pollution, building gas 
usage, and traffic datasets for IAQ-EU estimation and how 
the proposed framework was tested on an office building 
in a city-grid in downtown Chicago. The DOE’s large-size 
reference model building is placed within the Federal 
Campus site bounded between State, Dearborn, Jackson, 
and Adams Streets (Figure 2) for the test. The following four 
steps summarize the execution process: synthesize data, 
validation, ambient airflow simulation and prediction, and 
indoor IAQ-energy simulations (Figure 1). 

Figure 1: Workflow of IAQ-EU modeling. 
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This research uses data from four sources: meteorological 
data taken from the ‘Synaptic Data’ website, EPA’s back-
ground air pollution data, traffic congestion data, and build-
ing gas usage data. The local air pollution emission rates are 
estimated using building gas usage, traffic congestion, and 
emission factors. The prepared dataset is also validated via 
one-week observation data. A meteorological station which 
captures the weather conditions, including wind speed, 
wind direction, temperature, and humidity, may not realis-
tically represent the actual microclimate of a building site, 
and then reduces the accuracy of the simulation results. 

Figure 2: Spatial patterns and airflow analysis. 

This study models three layers of surrounding buildings in 
CFD simulation (Tong et al., 2016) to investigate the airflow 
analysis around the target building (Figure 2). The weather 
data from May through October during the eight consecu-
tive years (2010–2017) were aggregated using the O’Hare 
International Airport station’s weather data. For localizing 
the outdoor airflows, wind direction was set to the cardinal 
(North, East, South, and West), Intermediate (NE, NW, SE, 
SW), and secondary intermediate directions (NNE, ENE, 
ESE, SSE, SSW, WSW, WWW, and NNW) which are given 
to the CFD model. Then, the provided data was combined 
with the hourly air pollution dispersion (for local pollutants) 
and background air pollution concentration to be used in the 
ANN model for prediction. With applying the CFD0 engine, 
the wind pressure coefficient (Cp) and the contaminant con-
centration coefficient (Cc) per opening across the building 
façade were then captured. This procedure is also able to 
differentiate the airflow variation on building orifice based 
on the building height. It should be noted that this research 
carried out CFD analysis only for airflow calculations, while 
the thermal boundary condition was attained utilizing the 
EnergyPlus engine. 

Insufficient air pollution monitoring stations limits analyzing 
the impacts of outdoor air quality on IAQ-ES simulation with 
higher uncertainties. To estimate the local congestion of air 
pollutants, this research broke down the local air pollution 
into background, building-induced and traffic-induced 
pollutants, and combined them with the localized meteo-
rological data to be used in IAQ-ES simulations. Figure 3 
illustrates the summarized workflow of ambient air pollution 
data processing, which is described separately within the 
next sections. 

Figure 3: Workflow of localizing outdoor air pollution. 

In localizing the outdoor air pollution data, the following 
three steps were carried out:

In NV studies, using the mean air pollution concentration 
data is the more common procedure for capturing the 
background air pollution regimes. This research studied 
pollutant concentrations including NO2, CO, SO2, PM2.5, 
and PM10 through utilizing the clustering approach. In clus-
tering, the actual data is not labeled with class information. 
The purpose is to partition data into several (more than one) 
homogeneous groups where the within-group and between 
group object distance object dissimilarity are optimized. 
This study used eight consecutive years of air pollution 
historical data (2010–2017) in capturing the background air 
pollution regime for the city of Chicago. To generalize the 
data for the entire period and reduce the calculation loads, 
those months that provide thermally NV suitable conditions 
for occupants were only studied. Hence, May through 
October was selected in this research. It was found that 
there is no significant oscillation in dividing the data into 
workdays and weekends (Figure 4), while the concentration 
of the traffic-induced pollutants highly depends on week-
days as well as the hours during the days (Figure 6). 

Figure 4: Mean daily PM2.5 concentration per air monitoring station 

based on Workdays, Weekends, and Full-week in Cook County during 

May–October 2010–2017. 
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Emissions from building combustions depend on various 
determinants including the equipment and their main-
tenance as well as the fuel composition. The National 
Renewable Energy Laboratory (NERL) has collected the 
source and on-site fuel combustion emission factors, which 
are used as the baseline emissions from uncontrolled 
combustion sources (Deru & Torcellini, 2007). This research 
used the building-induced air pollutants, which captured 
the volume of fuel use from the Chicago Energy Usage 
(2010) dataset (“Energy Usage 2010 | City of Chicago | Data 
Portal,” n.d.) in the neighborhood scale. Then, by using the 
Fossil-Fuel-Cycle (FFC) conversion factors (Leslie, 2013) 
(Table 1) for each of the fuels, the real volume of fuel use 
was calculated. Pollutants emission rates were drawn from 
the Source Energy and Emission Factors for Energy Use in 
Buildings (Deru & Torcellini, 2007). 

Fuel  
type

FFC 
Factors

Emission factor (Kg/.m3)a

VOCs CO NOx SO2 PM2.5b PM10

Natural 
Gasc

1.19 2.16E+00 3.30E+01 3.92E+01 2.22E-01 2.97E+00 2.97E+00

a. In 1000m3 
b. PM10 =  PM2.5 (US EPA, 2016) 
c. Gas volume at 15.6°C and 101325Pa

 

Table 1: US average fuel FFC energy factors by fuel type  

(Leslie, 2013) and emission factors for on-site combustion  

of commercial boilers. (Source: Deru & Torcellini, 2007.) 

The emission rates were calculated for those months that the 
heating system in buildings is nearly off since NV accrues 
when the outdoor temperature is suitable enough in bringing 
in the outdoor air. Figure 5 illustrates the gas usage for the 
entire year 2010 in which the usage within May to October 
are in a similar pattern in non-residential buildings, while the 
residential buildings used more energy in May. Because of 
the lack of hourly gas usage data, this research assumed that 
the extra usage in residential buildings was accrued during 
night hours. Then, for weighting data hourly, those extra 
usages were excluded. As mentioned earlier, the air pollution 
studies during similar thermal conditions reduce the level of 
uncertainty in calculations. As the emission factors depend 
on temperature and outdoor air pressure, generalizing the 
emission rates for the NV suitable hours can increase the 
accuracy and reliability of air quality analysis.

This research captured the traffic information including 
the number of passenger cars and buses from the Chicago 
Traffic Tracker, Historical Congestion Estimates by Region 
2013–2018 (“Chicago Traffic Tracker - Congestion Estimates 
by Regions | City of Chicago | Data Portal,” n.d.). The traffic 
data was divided in two parts: workdays (Monday–Friday) 
and weekends (Saturday–Sunday) for hourly data (Figure 6). 

Mehdi Ashayeri

Figure 5: Monthly natural gas usage in Chicago Loop neighborhood for residential and non-residential buildings.
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Figure 6: Box-plot and whisker of hourly traffic profiles based on 

workdays and weekends for cars and buses in the Chicago Loop. 

CONTAM is a multizone indoor air quality (IAQ) and venti-
lation analysis software which is used to determine airflow 
rates, contaminant concentrations, and personal exposures 
(Dols & Polidoro, 2015). Airflows are comprised of infiltra-
tion, exfiltration, and air movement between internal zones, 
which are driven by natural or mechanical forces (Ng et al., 
2018). CONTAM was used in this research due to its ability 
to capture dynamic interaction between HVAC systems and 
real-time weather and airflows in a quick manner (Ng et al., 
2018). For coupling the multi-zone model to CFD0, three 
different methods exist [23]; the pressure-pressure coupling 
procedure was used in this research in which pressure is 
exchanged between CFD0 and CONTAM, and is considered 
as the most stable approach among all (L. Wang & Chen, 
2007). Apart from co-simulation methods, the coupling is 
implemented in two different ways based on airflow impacts 
on internal or external surfaces. Thus, the external link is 
used for performing external airflow impacts on building 
enclosure air-paths, and the internal link is designated for 
embedding the CFD code to the interior airflow and contam-
inant transport network using CONTAM.It should be noted 
that the internal link could only be coupled for a single zone 
as well as the external link in which the ambient environ-
ment is considered as a sole zone, and building model is 
added within the zone as blockage object. Both models were 
employed in this research, which is described in the follow-
ing two sub-sections:

External Link for CFD0 Editor™ and CONTAM™ 
Co-Simulation. Figure 7 illustrates the workflow of 
CFD and CONTAM co-simulation for outdoor airflow 
and air pollution analysis. The selected city-grid was 
bound to 1446mx1577mx480m, then, discretized to 
180x197x60 finite volumes. 

Figure 7: Workflow of external CFD0 Editor and CONTAM co-simulation. 

Internal Link for CFD0 Editor™ and CONTAM™ 
Co-Simulation. In order to investigate the non-uni-
form concentration of outdoor-sourced air contami-
nants indoors, it was determined to embed the CFD0 
zone within the CONTAM airflow network. In the 
internal coupling model, the boundary condition is 
initially assigned by CONTAM, then exported into the 
CFD0 Editor. This research assumed that each floor 
consists of a single zone to reduce the calculation 
loads and compensate for the limitation of the tool. 
Each zone bounded to 73.2mx48.8mx2.74m (LxWxH) 
with CFD mesh of 183x122x68. Figure 8 illustrates 
the workflow of internal co-simulation between 
CFD0 Editor™ and CONTAM™. 

Figure 8: Workflow of internal CFD0 Editor and CONTAM co-simulation. 

Energy Modeling Procedure Using FMI Platform. 
CONTAM and EnergyPlus can be coupled in order to 
implement combined airflow and heat transfer cal-
culations (Dols & Polidoro, 2015). With the calculated 
inter-zonal airflow rates by CONTAM and CFD0, 
EnergyPlus was used to simulate hourly energy 
saving potentials (cooling and ventilation) during 
NV suitable hours. Figure 9 illustrates the workflow 
of coupled CONTAM and EnergyPlus for simulating 
IAQ and energy usage for the studied building. 
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Figure 9: Workflow of IAQ and energy co-simulation. 

Conclusion

In this article, a novel framework was proposed for an inte-
grated indoor air quality and energy modeling under differ-
ent outdoor conditions through using a hybrid data-driven 
and simulation-based approach. The framework focuses 
on naturally ventilated office buildings in an urban context. 
The article presents the research background, followed by 
identifying gaps, objectives, methodology, and workflow of 
the framework. The initial results reveal that the impacts of 
traffic-induced emission rates are significantly higher than 
those obtained from gas combustion in buildings across the 
neighborhood. An initial test on the ANN model predicting 
the outdoor CFD simulation show a time-effectiveness of 
the procedure following the proposed framework. 
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